
Zend PHP 5.0 Certification
Course

by Paul Reinheimer

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Contents

1-PHPBasics-Print 3

10-PHP4vs5-Print 32

11-XMLandWebServices-Print 36

12-WebFeatures-Print 50

13-Supplementary-Print 54

2-Functions-Print 67

3-Strings-Print 74

4-Arrays-Print 86

5-Files-Print 98

6-Security-Print 107

7-Databases-Print 120

8-OOP-Print 132

9-DesignAndTheory-Print 141

2

Course Author: Paul Reinheimer

Zend Certification
Course

PHP Basics

Course Progress

 The twelve major topics of the exam:
– PHP Basics
– Functions
– Strings
– Arrays
– Files and Streams
– Security
– Databases
– Design and Theory
– Object Oriented Programming
– PHP 4 vs PHP 5
– Web Features
– XML2

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

PHP Basics
 PHP Basics refers to a number of things that

are likely already second nature to you:
– Syntax
– Operators
– Variables
– Constants
– Control Structures
– Language Constructs and Functions

3

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

4

PHP Tags
 Since PHP was designed to be incorporated

with HTML, the interpreter needs to
distinguish between PHP code and the
HTML markup.

 The most common tags are these:
 <?php
 //Long Tags
 ?>

4

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

PHP Tags Continued
 While the regular style of tags is preferred,

and can not be disabled, you are also
guaranteed access to the script style tags

<script language="php">
 //Long or Script style tags
</script>

5

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

5

PHP Tags Continued
 Short tags have also been quite popular,

however they can be disabled (often for XML
compliance) and are falling from favour
<? echo 'Short PHP tags'; ?>
<?= $expression ?>

 The latter set of tags are a shortcut for
<? echo $expression ?>

 Both sets of tags can be enabled/disabled via
use of the short_open_tag directive in php.ini

6

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

PHP Tags Continued
 ASP style tags are also available, but must

be enabled specifically in the php.ini file via
the asp_tags directive
<% echo 'ASP-style tags'; %>
<%= $variable; %>

7

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

6

PHP Tags Conclusion
 Use the long or regular PHP tags to ensure

your application will be portable across
multiple servers regardless of configuration
options.

8

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Comments
 Good programmers comment their code, PHP

supports multiple syntaxes for comments:
<?php
//This is a single line comment

This is also a single line comment

/*
 This is a multi-line
 comment
*/

9

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

7

A few comments about comments
 Single line comments are ended by either the

newline character or a closing PHP tag, so a
single like comment like
// This tag ?> can end PHP code

 Can have unintended output

10

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Variables
 Variables provide containers for data, with

PHP there are two main naming rules for
variables and other identifiers:
– Variables names can only contain letters,

numbers or underscores
– Variables names must start with a letter or an

underscore

11

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

8

Variables
 Even though PHP is loosely typed, PHP

variables are still stored and managed in one
of PHP’s core types:
– Scalar types: boolean, string, integer, float
– Compound types: array, object
– Special Types: resource, null

12

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Scalar Types - Strings
 Strings: A string is a series of characters,

natively within PHP each character is
represented by a single byte, as such PHP
has no native support for multi-byte character
sets (like Unicode)
– This changes with PHP6

 There is no PHP imposed limit on the length
of the strings you can use

13

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

9

Scalar Types - Strings
 Strings can be quoted in one of three ways

– ‘ ’ – The single quote or string literal, characters
within single quotes will be recorded as is, without
variable or escape sequences interpreted and
replaced

– “ “ – The double quotes, variables and escape
sequnces will be interpreted and replaced

– <<< – Heredoc (next slide)

14

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Scalar Types - Strings
 The heredoc syntax functions in a similar manner to

double quotes, but is designed to span multiple lines,
and allow for the use of quotes without escaping
$greeting = <<<GREETING
She said "That is $name's" dog!
While running towards the thief
GREETING;

 The closing heredoc tag must be the first thing on
the line, the only other permissible character on the
line is the semi-colon.

15

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

10

Scalar Types - Integer
 Integers (whole numbers) can be specified in

decimal (base 10), hexadecimal (base 16), or
octal (base 8) notation and optionally
preceded by a sign (+, -)
– To use octal precede the number with a 0
– To use hex precede the number with a 0x

 The maximum size of an integer is platform
dependent, a maximum of ~2Billion is
common

16

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Scalar Types – Float (double)
 Floats, or doubles, can be used to represent really

large or really small values. Floats can be entered
via several syntaxes
$a = 1.234; //Standard decimal notation
$b = 1.2e3; //Scientific notation (1200)
$c = 7E-10;
 //Scientific notation (0.0000000007)

 The size of a float is platform-dependent, although a
maximum of ~1.8e308 with a precision of roughly 14
decimal digits is a common value

17

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

11

Scalar Types - Boolean
 Boolean values hold either True (1) or False

(0)
– Any integer other than 0 is cast to TRUE

 TRUE & FALSE are case-insensitive, though
the all caps representation is common

18

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Quick Quiz
 Things to ponder:

– What is the output of:
 echo 09;

– What is the output of:
$a = 3e4;
$b = <<<EOD
 This is a variable: $a
 Wasn't that nice?
 EOD;
echo $b;

19

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

12

Compound Types - Arrays
 Arrays can contain any combination of other

variable types, even arrays or objects
 Arrays will be the subject of further

discussion further on

20

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Compound Types - Objects
 Objects allow data and methods to be

combined into one cohesive structure
 Objects will be covered in much greater

details in a future section

21

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

13

Special Types - Resource
 A resource is a special variable that

represents some sort of operating system
resource, generally an open file or database
connection

 While variables of the type resource can be
printed out, their only sensible use is with the
functions designed to work with them

22

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Special Types - null
 A null variable is special in that it has no

value and no type
 null is not the same as the integer zero or an

zero length string (which would have types)

23

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

14

Constants
 Constants allow you to create a special

identifier that can not be changed once
created, this is done using the define()
function. Constants can not be changed once
set.
define('username', 'bob');

24

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Variable Variables
 Variable Variables are both useful and confusing:
$a = 'name';
$$a = "Paul";
echo $name; //Paul

 There are several situations in which Variable
Variables can be useful, but use them with care as
they can easily confuse other programmers.

25

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

15

Operators
 PHP supports a multitude of Operators:

– Assignment
– Logical
– Arithmetic
– String
– Comparison
– Bitwise
– Other

26

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Assignment Operators
 Variables are useless unless you can store

something in them:

$name = "Paul";
$greeting = "Hello $name";
echo $greeting;

27

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

16

Assignment Operators
 By Value vs By Reference:

$a = 5;
$b = $a;
$b = 7;

//What is a, b?

$d = &$a;
$d = 9;
//What is a, d?

28

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Arithmetic Operators
 Arithmetic operators just like we remember

from school:

$a = 5;
$a = $a + 4;
$a = $a - 3;
$a = $a * 6;
$a = $a / 6;
$a = $a % 5;

29

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

17

Pre and Post Increment
 Very useful for loops

$a = 5;
echo $a++; //5
echo $a; //6

$b = 5;
echo ++$b; //6
echo $b; //6

$c = 5;
echo $c--; //5
echo $c; //4
$d = 5;
echo --$d; //4
echo $d--; //4

30

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Operator plus Assignment
 Frequently you run into situations where you

need to modify a variable in place:
$a = 5;
$a = $a + 5;

 Alternatively you can simply combine the
desired operator with the assignment
operator
$a += 5;

31

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

18

String Operators
 The . or concatenation operator is used to

“glue” two strings together:
 echo "His Name is: " . $name;
 This can also be combined with the

assignment operator
 $greeting .= $name;

32

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Crash Course in Binary
 We use a base 10 numbering system (0-9),

computers use base 2 (0-1).

33

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

19

Bitwise Operators
 & (and)

– If the bit in the same location for both the left and
right operand is 1, the output bit will be one

 | (or)
– If the bit in either the left or right operand is one,

the output bit will be one
 ^ (XOR)

– If the bit in either the left or right operand is one,
but not both, the output will be one

34

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Using Bitwise Operations
 What is the output of:

– 1 & 2
– 2 & 7
– 15 & 24
– 1 | 2
– 16 | 15
– 8 ^ 6
– 15 ^ 7

35

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

20

Bitwise Operators, Cont’d
 ~ (NOT)

– Inverts every bit, 0s become 1s, 1s become 0s
 >> (Shift Right)

– All of the bits in the binary number shift N places to the right
in the number, the right most digit(s) falls out, and the
resulting number is padded on the left with 0s. A right shift
of one is equivalent to dividing a number by two, and
tossing the remainder

 << (Shift Left)
– All of the digits shift N places to the left, padding the right

with 0s. A left shift of one is equivalent to multiplying a
number by two

36

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Using Bitwise Operators
 What is the output of (within the context of

our 8 bit binary world):
– ~254
– 4 >> 2
– 1 << 2
– 5 >> 2
– 7 << 3

37

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

21

Other Operators
 @

– Suppresses errors from the following expression
 `` (backticks)

– Execute the contents as a shell command
(shortcut for shell_exec())

 Instanceof
– Returns true if the indicated variable is an

instance of the designated class, one of it’s
subclasses or a designated interface

38

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Using Other Operators - @
 @ - Error Suppression
ini_set("ERROR_LEVEL", E_STRICT);
$a = @myFunction();
function myFunction($a)
{
 array_merge(array(), "");
}

39

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

22

Using Other Operators - ``
 The backtick is dangerous, it executes with

the same permissions as the webserver, and
is easy to miss when skimming code, use
shell_exec() instead, if you must.

$ls = `ls`;

40

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Using Other Operators – instanceof
 The instanceof operator is useful (often

combined at the function level with
typehinting) to ensure you are given what
you expect.
$a = new stdClass;
if ($a instanceof stdClass) { ... }
if ($a !instanceof stdClass) { ... }
 //Parse Error

41

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

23

Control Structures
 If

– Alternate
– Short

 Switch
 While
 do
 For

– Continue
– break

 Foreach
 Functions

– Paramaters
 Optional
 Byref

 Byval
 Objects

 Variable functions

 Objects
– Later!

42

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

if
 if – The most basic, and frequently used conditional
if ($a === 5)
{
 echo "a is identical to 5";
}elseif ($a == 5)
{
 echo "a is equal to 5";
}else
{
 echo "a is neither equal to or identi
cal to 5";
}

43

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

24

if – Alternate Syntax
 Rarely used, but it works:
if ($a == 5):
 echo"hi";
 echo "they are equal";
elseif ($a === 5):
 echo "they are also identical";
endif;

44

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

if – Short Syntax
 This one’s actually used

$action = (empty($_POST['action']))
 ? 'default' : $_POST['action'];

 it a lot in places where they want to keep these sorts
of things short

45

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

25

Switch
 Switch statements operate on a single item, but are

faster than if statements:
switch($a)
{
 case 1:
 echo "1";
 case 2:
 echo "2";
 break;
 default:
 echo "3";
}

46

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

do
 With the do loop the condition is executed at

the termination of the condition, rather than
the beginning
$a = 12;
do
{
 echo $a;
}while($a++ < 10);
echo $a;

 Output?

47

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

26

while
 With a while loop the condition is executed at the

head of the loop
$a = 0;
while ($a++ < 10)
{
 echo $a;
}
echo $a;

 Output?

48

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

for
 Easy way to combine all the regular parts of an

iteration loop:
for ($a = 0; $a < 10; $a++)
{
 echo $a;
}
for ($a = 0, $b = 10; $a * $b < 100;
 $a++, $b++)
{
 echo $a;
}

49

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

27

foreach
 Fast quick way to iterate over an array
foreach ($students as $name => $grade)
{
 echo "$name got a $grade";
}

 A note about objects in foreach loops

50

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

continue
 Jump out of current iteration of the loop, and

continue with the next one
for($a = 0; $a < 100; $a++)
{
 if (!($a % 7))
 {
 continue;
 }
 echo $a . "\n";
}

51

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

28

break
 Exit loop unconditionally and continue with code

execution
$a = 0;
$b = 7;
while ($a++ < 100)
{
 while ($b++ < 40)
 {
 if (($a * b) > 80)
 {
 break 2;
 }
 }
}

52

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

return
 Return ends execution and returns control to

the calling scope, functions both inside an
included file (returning control to the calling
file) and from inside a function/method
(returning control to the calling code)

53

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

29

exit;
 Halt execution of the script, can optionally

return a message, or an exit status (0-255)
– exit();
– die();
– exit(‘couldn’t load file’);
– exit(1);
– exit(0);

54

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

A Basic Conclusion
 PHP Tags, multiple types with different use

rules (which ones are on/off by default, which
ones a guaranteed?)

 PHP is loosely typed, but there is typing
going on underneath the hood

 Some assumptions are made (octal format)
 Binary is a pain in the neck, but it has its

uses
 Control structures have formats other than

the ones commonly uses55

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

30

Questions for further study
 Practice casting back and forth between

variables of different types (int, string, double,
boolean, array, object, null, resource)

 What’s the output? Trace carefully then test:

for($a = 013; $a < 27; $a++)
{
 $b = $a;
 $a += $b % 2;
 $b = $b >> 2;
 echo $b . " ";
}
echo $b * $a;

56

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

31

Course Author: Paul Reinheimer

Zend Certification
Course

PHP 4 / 5 Differences

Course Progress

 The twelve major topics of the exam:
– PHP Basics
– Functions
– Strings
– Arrays
– Files and Streams
– Security
– Databases
– Design and Theory
– Object Oriented Programming
– PHP 4 vs PHP 5
– Web Features
– XML

2
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Shortest Section
 The majority of differences between PHP 4

and PHP 5 have been covered in their
relevant subsections

 If you handed the transition yourself, you’re
likely already familiar with most of them

 This is just a re-cap

3
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

33

Object Orientation
 ByRef rather than copying
 $myClone = clone $original;
 __clone() function called on clone if it exists
 Constructor and Destructor
 Magic Methods (in OO Section)
 Class constants
 SimpleXML
 PDO
 SPL
 instanceOf
 Type hinting

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

E_STRICT
 Raises notices when using old or outdated

coding methods
 Not included in E_ALL

– Non static method calls
– By reference issues
– var key word

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

34

Summary & Homework
 Go read

– http://ca3.php.net/manual/en/faq.migration5.php
 Objects got better, faster
 The way we handled objects got better
 E_STRICT is available, it’s not included in

E_ALL

6
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

35

Course Author: Paul Reinheimer

Zend Certification
Course

XML and Web Services

1

Course Progress

 The twelve major topics of the exam:
– PHP Basics
– Functions
– Strings
– Arrays
– Files and Streams
– Security
– Databases
– Design and Theory
– Object Oriented Programming
– PHP 4 vs PHP 5
– Web Features
– XML and Web Services

2
2

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

XML and Web Services
 XML Basics
 SimpleXML
 XML Extensions
 Xpath
 Webservices Basics
 SOAP
 REST

3
3

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

37

XML
 Well Formed

– Single root level tag
– Tags must be opened and closed properly
– Entities must be well formed

 Valid
– Well formed
– Contain a DTD
– Follow that DTD

4
4

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

XML Sample
<!DOCTYPE books SYSTEM "http://
www.example.com/formats/books.dtd">

<bookshelf>

 <book>Tom & Jerry's, a history
of</book>

 <book>2 + 2 < 5, Math for beginners</
book>

</bookshelf>

5
5

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

38

Parsing XML

 SAX
– Simple API for XML

 Event based approach
where every ‘event’
encountered must be
coded for and handled

 Events include open
tag, close tag, tag data

 DOM
– Document Object Model

 Loads entire document
into ram, then creates
an internal tree
representation

6
6

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

SimpleXML
 Uses DOM method
 Very easy to use
 Memory Intensive
 http://ca.php.net/simplexml

7
7

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

39

SimpleXML
$library = <<<XML
<library>
 <metaInfo>
 <owner>Paul Reinheimer</owner>
 <location>Montreal</location>
 <tag>My Books</tag>
 </metaInfo>
 <books>
 <book>
 <author>Paul Reinheimer</author>
 <title>Professional Web APIs with PHP</title>
 </book>
 <book>
 <author>Orson Scott Card</author>
 <title>Ender's Game</title>
 </book>
 <book>
 <author>Tom Hold</author>
 <title>In Your Dreams</title>
 </book>
 </books>
</library>
XML;

8
8

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

SimpleXML
$xml = simplexml_load_string($library);

echo $xml->metaInfo->owner . "'s Library \n";
foreach($xml->books->book AS $book)
{
 echo $book->author . " wrote " . $book->title . "\n";
}

Output:
Paul Reinheimer's Library
Paul Reinheimer wrote Professional Web APIs with PHP
Orson Scott Card wrote Ender's Game
Tom Hold wrote In Your Dreams

9
9

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

40

XPath
 W3C Standard supported by many

languages
 Combines the mojo of Regex with some

SQL like results

10
10

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

XPath Searches
 xpath(“item”) - will return an array of item objects
 xpath(“/bookshelf”) - will return all children of the
 forum node
 xpath(“//book”) - will return an array of title values
 xpath(“.”) - will return the current node, <bookshelf>
 xpath(“..”) - will return an empty array, root node
<bookshelf> does not have a parent element.

11
11

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

41

Web Services
 Web Services is a generic umbrella that

describes how disparate systems can
integrate with each other over the web

 Most major sites offer some form of web
services:
– Amazon
– FedEx
– eBay
– PayPl
– del.icio.us

12
12

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Why use Web Services?
 Someone else has data you need
 Easier than scraping pages

– also more reliable
 Automate processes
 Provide additional information to your clients

13
13

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

42

REST
 Representational State Transfer
 Requests look like filled out forms, can use

either GET or POST
 Response is an XML document
 Request and Response is defined by the

service provider
 Very simple and popular

14
14

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

REST Request
 http://library.example.com/api.php?
devkey=123&action=search&type=book&
keyword=style

15
15

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

43

REST Response
 <?xml version="1.0" encoding="UTF-8"?>

<LibraryAPI
 xmlns="http://library.example.com/api/spec">
<Request>
 <RequestId>123a456</RequestId>
 <Paramaters>
 <Argument Name="devkey" Value="123" />
 <Argument Name="action" Value="search" />
 <Argument Name="type" Value="book" />
 <Argument Name="keyword" Value="style" />
 </Paramaters>
</Request>

16
16

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

REST Response Continued
 <Response>

 <ResultCount>2</ResultCount>
 <Item>
 <Title>Style Book Vol 1</Title>
 <Status>Out</Status>
 <Holds>3</Holds>
 <CopiesOnHand>2</CopiesOnHand>
 <Author>Jon Doe</Author>
 </Item>
 <Item>
 <Title>Style Book Vol 2</Title>
 <Status>In</Status>
 <Holds>0</Holds>
 <CopiesOnHand>1</CopiesOnHand>
 <Author>Jon Doe</Author>
 </Item>
</Response>

17
17

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

44

SOAP
 Simple Object Access Protocol

– Doesn’t actually stand for anything
anymore

 Requests are sent using POST
 Requests are encapsulated within a

SOAP Envelope
 Responses are XML documents with

similar Envelope & Body sections

18
18

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

WSDL Documents
 SOAP web services are described by WSDL

files
 They are designed for automated (not

human) consumption
 Describes the methods offered by the web

service, the parameters required, and the
return type, as well as all complex types
required by the service

19
19

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

45

SOAP Request
<?xml version="1.0" encoding="UTF-8"
standalone="no"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <SOAP-ENV:Body>
 <devkey xsi:type="xsd:int">123</devkey>
 <action xsi:type="xsd:string">search</action>
 <type xsi:type="xsd:string">book</type>
 <keyword xsi:type="xsd:string">style</keyword>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

20
20

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

SOAP Response
<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-
instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
 <SOAP-ENV:Body>
 <LibrarySearchResponse xmlns="http://
library.example.com/api/ns">
 <RequestInfo>
 <devkey xsi:type="xsd:string">123</devkey>
 <action xsi:type="xsd:string">search</action>
 <type xsi:type="xsd:string">book</type>
 <keyword xsi:type="xsd:string">style</keyword>
 </RequestInfo>

21
21

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

46

SOAP Response Cont’d
<ResponseInfo>
 <ResultCount>2</ResultCount>
 <Item>
 <Title xsi:type="xsd:string">Style Book Vol 1</Title>
 <Status xsi:type="xsd:string">Out</Status>
 <Holds xsi:type="xsd:int">3</Holds>
 <CopiesOnHand xsi:type="xsd:int">2</CopiesOnHand>
 <Author xsi:type="xsd:string">Jon Doe</Author>
 </Item>
 <Item>
 <Title xsi:type="xsd:string">Syle Book Vol 2</Title>
 <Status xsi:type="xsd:string">In</Status>
 <Holds xsi:type="xsd:int">0</Holds>
 <CopiesOnHand xsi:type="xsd:int">1</CopiesOnHand>
 <Author xsi:type="xsd:string">Jon Doe</Author>
 </Item>
 </ResponseInfo>
 </LibrarySearchResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

22
22

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

PHP5’s SOAP Support
 PHP5 has built in SOAP support
 The functions (generally) take a WSDL file as

input, and create an object that mimics the
services of the webservice:

$client = new SoapClient("http://
soap.amazon.com/schemas2/
AmazonWebServices.wsdl");

23
23

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

47

PHP5’s Built in SOAP Support
 Making API calls is now trivial:

$result = $client->KeywordSearchRequest
($params);

24
24

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

PHP5 SOAP Server
 The internal SOAP support doesn’t include

creation of WSDL files
– NuSOAP does
– Zend Studio does

 You can still provide a service either by using
an external WSDL file, or merely defining the
access methods

25
25

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

48

XML & Web Services Conclusion
 XML is a great storage device, SimpleXML

makes it easy to use
 XPath is powerfull, and scary
 REST is very easy to use, requests are

trivial, responses are just XML
 SOAP is a bit tougher if you try to do it from

scratch, built in support makes it equally
trivial

26
26

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Homework
 Find some XML files (from this class, RSS

feeds, etc)
– Open them up in SimpleXML
– Read various elements directly
– Deal with namespaces

 Find a simple REST web service, make a few
calls

 Find a simple SOAP web service, make a
few calls

27
27

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

49

Course Author: Paul Reinheimer

Zend Certification
Course
Web Features

1

Forms
 GET vs POST
 Form Tokens
 Default Values
 Re-populating data

2
2

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Cookies
 Client side data store

– Can be deleted, manipulated, copied
– Behavior is inconsistent

 Header();
– Set cookies manually, using the RFC for the

appropriate headers
 Set_cookie();

– Wraps the Header function, sets default values
when nothing is passed.

3
3

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

51

Sessions
 Sessions, The safer way to state
 Use a cookie that contains a Session ID
 That Session ID corresponds with a local(ish)

data store that contains the user’s
information

 The Session ID is the only data that is
transmitted to a client, and is also the only
thing that identifies them

 Session Hijacking and Session Fixation

4
4

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

HTTP Headers
 Header(); redirects

– Do they work?
 Other arbitrary headers

– Header injection attacks
– Caching
– Content-Type
– Meta Information

5
5

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

52

Web Features Conclusion
 Data comes in from GET or POST, frequently

from forms, don’t trust it
 Cookies are a client side data store
 Sessions use cookies to offer a localish data-

store
 Header allows us to send meta information to

the client

6
6

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Homework
 Create a cookie acceptance checking script

– Set a cookie manually
– Use a redirect
– see if it’s there
– Do it with 1 script

 Play with sessions
– What can you store in them
– Can you write your own session handler?

7
7

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

53

Course Author: Paul Reinheimer

Zend Certification
Course

Supplementary Material + Review

1

Supplementary Material
 If you’re reading this, we’ve got some extra

time left over, so let’s look at some material in
greater detail, or cover some things just
assumed previously

2

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Strings - String Functions
 PHP has a large collection of built in functions

to handle strings, we’ve looked at strings
already, let’s look at different ways to interact
with them in greater detail

3

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

55

strlen()
 Returns the length of the string passed to it:

echo strlen('Jello'); //5
$a = array("Hello World", "a");
echo strlen($a); //?

4

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

str_replace() & strtr()
 Searches the given string for the needle,

replacing it with the presented string:

echo str_replace("a", "b", "abc"); //bbc
echo str_replace(array('a','b','c'), array('b','c','a'), 'abc');
 //?

echo strtr('abc','ab','bc'); //bcc

5

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

56

strcmp() & strcasecmp()
 These functions compare two strings, returning

zero when they match, greater than one when
string 1 > string 2, and less than one when
string 1 < string 2

echo strcmp('hello', 'Hello'); // > 0
echo strcasecmp('hello', 'Hello'); // ?

6

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

strpos() & strstr()
 strpos will return the position of the search

string within the target. strstr will return the
portion of target from the beginning of the first
match until the end. Both function have case
insensitive counterparts

echo strpos('hello new world', 'new'); //6
echo strstr('hello new world', 'new'); //new world

7

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

57

strspn() & strcspn()
 Apply a mask to a given string, strspn() returns

the number of characters matching the mask,
strcspn() uses a blacklist and returns the
number of non-matching characters:

$mask = "abcdefg ";
$string = "beg bad fed billy"; //strlen($string) = 17
echo strspn($string, $mask); //13

$mask = "abcdefg";
$string = "joy to the world"; //strlen($string) = 16
echo strcspn($string, $mask); //9

8

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

substr()
 substr() – Used to retrieve a portion of a string

$string = "I am the very model of the modern major
general";
echo substr($string, 2);
 //am the very model of the modern major general
echo substr($string, 9, 10); //very model
echo substr($string, -7); //general
echo substr($string, 5, -8);
 //the very model of the modern major

9

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

58

Printf formatting specifiers:

 % - a literal percent character. No argument is required.
 b - the argument is treated as an integer, and presented as a binary number.
 c - the argument is treated as an integer, and presented as the character with that ASCII value.
 d - the argument is treated as an integer, and presented as a (signed) decimal number.
 e - the argument is treated as scientific notation (e.g. 1.2e+2).
 u - the argument is treated as an integer, and presented as an unsigned decimal number.
 f - the argument is treated as a float, and presented as a floating-point number (locale aware).
 F - the argument is treated as a float, and presented as a floating-point number (non-locale aware).

Available since PHP 4.3.10 and PHP 5.0.3.
 o - the argument is treated as an integer, and presented as an octal number.
 s - the argument is treated as and presented as a string.
 x - the argument is treated as an integer and presented as a hexadecimal number (with lowercase

letters).
 X - the argument is treated as an integer and presented as a hexadecimal number (with uppercase

letters).

10

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

String Questions:
 strlen(null);
 Use printf() to format $a = 123.4567 as

“$123.45”
 Using a combination of string functions write

one code block that will extract “hello world”
from “he said hello world” and “hello molly”
from “hello molly he said”

 What does a string cast to an array give you?
 Which syntax is preferred in PHP5?

$a[0] or $a{0}
11

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

59

Arrays
 Arrays are a way of storing multiple peices of

related information, you can store data in either
an associative or an enumerated array

 In enumerated array values are keyed
numerically, when you allow PHP to assign the
key it takes the highest numeric key used thus
far, and adds one

 In associative arrays strings are used to key
the data, keys containing only digits are cast to
integers

12

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

array_keys() & array_values()
 These two functions will split an array up,

giving you either the keys or values from an
array respectively:
print_r(array_keys(array('a' => 'b', 'c'=>'d')));
Array
(
 [0] => a
 [1] => c
)
print_r(array_values(array('a' => 'b', 'c'=>'d')));
Array
(
 [0] => b
 [1] => d
)

13

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

60

Merging Arrays
 You can merge arrays using array_merge(),

when different associative arrays have
duplicate keys, the values in the rightmost
array take precedence
$a = array('a' => 'b', 'c'=>'d');
$b = array('a' => 'e', 'b'=>'d');
print_r(array_merge($a, $b));
/*
Array
(
 [a] => e
 [c] => d
 [b] => d
)
*/

14

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

array_splice()
Cut out a chunk of an array:
$a = range(0, 20, 2);
$a = array_slice($a, 4, 3);
print_r($a);
/*
Array
(
 [0] => 8
 [1] => 10
 [2] => 12
)
*/

15

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

61

Array Questions
 $a = array(1,2,3,4);

Remove 2
 Describe how you would hold information on a

series of students, their name, email and grade
 What does array_merge_recursive() do?
 $b = array(‘23’ => ‘cat’, ‘dog’, ‘beaver’, 7);

$b[] = $b;
Give me both ways to get ‘dog’

 Give me the first letter of dog

16

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

SQLite
 SQLite is a database, without the database
 Basically, rather than using a separate

program to persistently maintain the database,
SQLite on the other hand requires the C
libraries that comprise the DB to be built into
whatever program would like to use them

 SQLite was built into PHP by default as of
PHP5, which is cool, some twits turn it off,
which isn’t

 It’s fast, free, and has nice licensing terms
17

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

62

SQLite Continued
 Apart from not needing to connect to a remote

server or process, SQLite is no different from
other database systems:

$db = sqlite_open('mysqlitedb', 0666, $sqliteerror)
sqlite_query($db, 'CREATE TABLE foo (bar varchar(10))');
sqlite_query($db, "INSERT INTO foo VALUES ('fnord')");
$result = sqlite_query($db, 'select bar from foo');

 Take a look at the manual pages for more
information on the function library

18

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

MySQL vs MySQLi
 Recent versions of PHP no longer ship with the

MySQL extension built in, you must enable it at
configure time.

 We new have two versions of the MySQL
extension available, MySQL and MySQLi

 The MySQLi extension makes some of
MySQL’s more recent functionality available,
things like prepared statements

19

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

63

Objects
 Objects can be used to merge togethor data

and the methods that manipulate it
 You can define the interface of an object using

either abstract classes or interfaces
 Abstract classes can define the methods that

extending classes must offer by declaring them
with the abstract keyword. They may also
create their own methods

 Interfaces simply define the methods that an
implementing object must include

20

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Abstraction
abstract class example
{
 public $name;
 abstract public function displayExample();
 abstract protected function prepExample();
 public function __construct($name)
 {
 $this->name = $name;
 }
}

class myExample extends example
{
 public function displayExample() { echo $this->name; }
 public function prepExample() {
 $this->name = md5($this->name);}
}

21

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

64

Interfaces
interface inputData
{
 public function alpha ($data);
 public function alnum ($data);
}
interface outputData
{
 public function web ($data);
 public function sql ($data);
}
class templateEngine implements inputData, outputData
{
 public function alpha($a) {}
 public function alnum($b) {}
 public function web($c, $d = "") {}
 public function sql($e) {}
 public function iStillWork() {}
}

22

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Built in Interfaces
print_r(get_declared_interfaces());
/*
Array
(
 [0] => Traversable
 [1] => IteratorAggregate
 [2] => Iterator
 [3] => ArrayAccess
 [4] => Serializable
 [5] => RecursiveIterator
 [6] => OuterIterator
 [7] => SeekableIterator
 [8] => Countable
 [9] => SplObserver
 [10] => SplSubject
 [11] => Reflector
)
*/

23

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

65

Exercises
 Create an abstract class, extend it

– Can you define an abstract method as private?
 Create an interface, implement it

– Can you define an interface as having private
methods?

 Implement the Iterator interface
– foreach() over your new object :)

 Play with some of those string and array
function

24

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

66

Course Author: Paul Reinheimer

Zend Certification
Course

Functions

Course Progress
 The twelve major topics of the exam:

– PHP Basics
– Functions
– Strings
– Arrays
– Files and Streams
– Security
– Databases
– Design and Theory
– Object Oriented Programming
– PHP 4 vs PHP 5
– Web Features
– XML

2

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Functions
 If you don’t know what functions are…
 We use functions for several major reasons

– Readability
– Maintainability
– Code separation
– Modularity
– Our Comp-Sci teacher told us to
– To do otherwise would subject us to mockery

3

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

68

Functions.. Examples?
 function myName()

{
 echo "Paul";
}

function yourName($name)
{
 echo $name;
}

4

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Functions - Scope
 function scope($count)

{
 $count = 100;
 echo $count;
}

$count = 3;
scope($count);
echo $count;

5

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

69

Functions - Examples
 function incrementID()

{
 global $id; //GLOBALS[‘id’];
 $id++;
}

function x10($number)
{
 return $number * 10;
}

6

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Functions - Examples
 function printList($string, $count = 5)

{
 for ($i = 0; $i < $count; $i++)
 {
 echo $string;
 }
}

7

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

70

Functions - Examples
 function newTo5(&$number = 2)

{
 echo ++$number;
}

8

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Functions - Examples
 function takeWhatYouGet()

{
 $a = func_get_args();
 foreach ($a as $key => $value)
 {
 echo "In slot $key I found $value how excit
ing! \n";
 }
}
//takeWhatYouGet(3, 2, "paul", "bob", 28);

9

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

71

Functions - Examples
 function andLikeIt($shouldILook = TRUE)

{
 if ($shouldILook)
 {
 $argCount = func_num_args();
 for ($i = 0; $i < $argCount; $i++)
 {
 echo "In slot $i I found " . func_get_arg
($i) . " how very exciting! \n";
 }
 10

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Functions & Objects, Friends at
last
 In PHP4 Objects were thrown around ByVal,

this meant that you made copies without
even thinking about it.

 In PHP5 Objects are always passed ByRef
unless you explicitly clone it, keep that in
mind

11

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

72

Functions - Conclusion
 They’re terribly useful
 You have to remember how scope works

– Practice tracing
 Objects fly around by reference now
 Return statements can exist anywhere within

the function, you can even have several
 Avoid situations where the same function

may return nothing, or something (Zend
Studio’s Code Analyzer tests for this)

12

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Questions for further study
 Develop a function that accepts a variable

number of parameters
 Experiment with variable scope, ensure you

are comfortable with how local and global
variables interact

 What happens if a function is defined then
the PHP scope ends, then resumes again
later with the remainder of the function

 Is “_” a valid function name?

13

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

73

Course Author: Paul Reinheimer

Zend Certification
Course

Strings

Course Progress
 The twelve major topics of the exam:

– PHP Basics
– Functions
– Strings
– Arrays
– Files and Streams
– Security
– Databases
– Design and Theory
– Object Oriented Programming
– PHP 4 vs PHP 5
– Web Features
– XML

2

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Little bits of string
 Strings are the most commonly used variable

type in PHP, because they are both central to
web development, and the common method
of data transmission from the user

 Within strings many characters take a special
meaning, matching quotes, back slashes,
octal numbers, variables, if you wish to
accept them as they are you must escape
them with the \ character.

3

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

75

Escape Sequences
 PHP Accepts several escape sequences

– \n linefeed (LF or 0x0A (10) in ASCII)
– \r carriage return (CR or 0x0D (13) in ASCII)
– \t horizontal tab (HT or 0x09 (9) in ASCII)
– \\ backslash
– \$ dollar sign
– \" double-quote
– \[0-7]{1,3} the sequence of characters matching

the regular expression is a character in octal
notation

4

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Matching Strings
 strcmp() – Compare two strings. Returns < 0

if str1 is less than str2 ; > 0 if str1 is greater
than str2 , and 0 if they are equal.

 strcasecmp() – Case insensitive version of
strcmp()
– Remember 0 == FALSE and 0 !== FALSE

5

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

76

Extracting
 substr() – Used to retrieve a portion of a string

$string = "I am the very model of the modern major
general";
echo substr($string, 2);
 //am the very model of the modern major general
echo substr($string, 9, 10); //very model
echo substr($string, -7); //general
echo substr($string, 5, -8);
 //the very model of the modern major

6

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Extracting – Array Syntax
 $string = "I am the very model of the modern

major general";
echo $string[5]; //t, the t from the
echo $string[0]; //I
echo $string{2}; //a, the a from am
exit;

 The {} syntax is depreciated in PHP 5.1 and
will produce a warning under E_STRICT

7

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

77

Formatting
 number_format() – By default formats a number with

the comma as the thousands separator, and no
decimal

echo number_format("1234567.89");
 // 1,234,568
echo number_format("9876543.698", 3, ",", " ");
 // Shows 9 876 543,698

8

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

money_format()
 Only available when the underlying c library strfmon()

is available (not windows)

$number = 1234.56;
setlocale(LC_MONETARY, 'en_US');
echo money_format('%i', $number) . "\n";
// USD 1,234.56

setlocale(LC_MONETARY, 'it_IT');
echo money_format('%.2n', $number) . "\n";
// L. 1.234,56

9

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

78

Printf family
 Part of a family: print(), sprintf(), vprintf(),

sscanf(), fscanf(). All of which accept the
same formatting options

10

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Printf formatting specifiers:

 % - a literal percent character. No argument is required.
 b - the argument is treated as an integer, and presented as a binary number.
 c - the argument is treated as an integer, and presented as the character with that ASCII value.
 d - the argument is treated as an integer, and presented as a (signed) decimal number.
 e - the argument is treated as scientific notation (e.g. 1.2e+2).
 u - the argument is treated as an integer, and presented as an unsigned decimal number.
 f - the argument is treated as a float, and presented as a floating-point number (locale aware).
 F - the argument is treated as a float, and presented as a floating-point number (non-locale

aware). Available since PHP 4.3.10 and PHP 5.0.3.
 o - the argument is treated as an integer, and presented as an octal number.
 s - the argument is treated as and presented as a string.
 x - the argument is treated as an integer and presented as a hexadecimal number (with lowercase

letters).
 X - the argument is treated as an integer and presented as a hexadecimal number (with

uppercase letters).

11

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

79

Printf examples
 $number = 1234.5678;

printf("%d", $number); //1234
printf("%f", $number);
 //1234.567800 (6 Decimal Places)
printf("%8d", $number); // 1234
printf("%'x8d", $number); //xxxx1234
printf("%8.2f", $number); //1234.57
printf("%8.2f", $number); //1234.57

12

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Replacement
 $string = "I want steak with a side of salad";

echo str_replace("salad", "fries", $string);
 //I want steak with a side of fries
echo str_replace(array("steak", "salad"), array
("burger", "taco"), $string);
 //I want burger with a side of taco
echo str_replace(array("steak", "burger"), array
("burger", "taco"), $string);
 //I want taco with a side of salad

13

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

80

PCRE
 PCRE – Perl Compatible Regular

Expressions, PHP’s most popular RegEx
engine

 Technically you can turn it off, no one does
 Exceedingly powerful, not always the fastest

choice, if you can use a built in function do
so.

14

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

PCRE – Meta Characters
 \d Digits 0-9
 \D Anything not a digit
 \w Any alphanumeric character or an

underscore (_)
 \W Anything not an alphanumeric character

or an underscore
 \s Any whitespace (spaces, tabs, newlines)
 \S Any non-whitespace character
 . Any character except for a newline

15

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

81

PCRE – Meta Characters
 ? Occurs 0 or 1 time
 * Occurs 0 or more times
 + Occurs 1 or more times
 {n} Occurs exactly n times
 {,n} Occurs at most n times
 {m,} Occurs m or more times
 {m,n} Occurs between m and n times

16

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

PCRE – Pattern Modifiers
 The way the PCRE engine works can be

modified by modifiers placed after the
terminating character
– i – Case insensitive search
– m – Multiline, $ and ^ will match at newlines
– s – Makes the dot metacharacter match newlines
– x – Allows for commenting
– U – Makes the engine un-greedy
– u – Turns on UTF8 support
– e – Matched with preg_replace() allows you to call

17

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

82

preg_match()
 preg_match() – Returns the number of matches

found by a given search string under this format,
also capable of returning the match:

$string = "124 abc";
var_dump(preg_match("/\w\s
\w/", $string)); // 1 (matches);
var_dump(preg_match("/\d{3}\s[a-z]
{3}/", $string)) // 1 (matches)

18

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

preg_replace()
 Searches the subject for matches to a given

pattern replaced with the given
replacement text

 $pattern = "!(java|ruby)!i";
$string = "I love programming in Java, I als
o love ruby!";
echo preg_replace
($pattern, "php", $string);

 //I love programming in php, I also love php!

19

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

83

preg_replace()

$bbcode = "Hi !!Paul!!, how are !!you!! today\n";
echo preg_replace("/!!(.+)!!/e", "strtoupper('\
 \1')", $bbcode);
//Hi PAUL!!, HOW ARE !!YOU today

echo preg_replace("/!!(.+)!!/eU", "strtoupper('
 \1')", $bbcode);
//Hi PAUL, how are YOU today

 Security concerns, escape input

20

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

preg_split()
 preg_split() allows you to split strings based

on more complex rules:
$ws = "Too much white
 space";
print_r(preg_split("!\s+!", $ws));
Array(
 [0] => Too
 [1] => much
 [2] => white
 [3] => space
)21

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

84

Strings & Patterns Conclusion
 Escaping, worth thinking about
 Heredoc vs “ vs ‘
 printf() and its family
 PCRE

– meta characters
– pattern modifiers
– functions

22

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Questions for further study
 Develop a regular expression to pull email

addresses from a web page using the
standard paul at preinheimer dot com format.

 Experiment with the printf() modifiers and
research the related functions

 There are many string functions in PHP
experiment and research a few

 Try using the various escape sequences with
all three quote types (single, double,
heredoc)

23

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

85

Course Author: Paul Reinheimer

Zend Certification
Course

Arrays

Course Progress
 The twelve major topics of the exam:

– PHP Basics
– Functions
– Strings
– Arrays
– Files and Streams
– Security
– Databases
– Design and Theory
– Object Oriented Programming
– PHP 4 vs PHP 5
– Web Features
– XML

2

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Enumerated Arrays
 Numeric keys, either auto assigned or

assigned by you, great when you don’t care
how the data is indexed

 $students = array();
$students[] = "Paul";
$students[] = "Fred";
$students[] = "Bob";
print_r($students);

3

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

87

Enumerated Arrays
Array
(
 [0] => Paul
 [1] => Fred
 [2] => Bob
)

4

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Associative Arrays
 Frequently used with databases, or when

there should be some key=>value
association

 $students = array();
$students['Paul'] = 'Canada';
$students['Bob'] = 'USA';
$students['Winston'] = 'United Kingdom';
$students['David'] = 'South Africa';
print_r($students);

5

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

88

Associative Arrays
Array
(
 [Paul] => Canada
 [Bob] => USA
 [Winston] => United Kingdom
 [David] => South Africa
)

6

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Multi Dimensional Arrays
 Multi-Dimensional arrays, or arrays of arrays

can contain a lot of data, but can also be
complicated to access

 $students = array();
$students[] = array
('name' => 'paul', 'location' => 'canada');
$students[] = array
('name' => 'bob', 'location' => 'USA');
print_r($students);

7

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

89

Multi-Dimensional Arrays
Array
(
 [0] => Array
 (
 [name] => paul
 [location] => canada
)
 [1] => Array
 (
 [name] => bob
 [location] => USA
)
)

8

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Arrays - Questions
 $a = array(5=>"b", 7, 9, "23" => 'c', 'j');

$b = array(1, 2, 3, 'f', 'fred' => $a);
 How do I access the value:

– 7
– ‘c’
– ‘b’ through the array $b
– ‘f’

9

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

90

Array Iteration
 When iterating through an array via foreach()

keep in mind it operates on a copy of the
array

 Using the internal array pointer doesn’t have
this problem

10

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Array Iteration
 end() – Move pointer to last element
 key() - Retreives key from current position
 next() – Advances array pointer one spot then

returns current value
 prev() – Rewinds the array pointer one spot, then

returns the current value
 reset() – Resets the array pointer to the beginning of

the array
 each() – Returns the current key and value from the

array, then iterates

11

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

91

Array Iteration - Example
 $fruit = array('a' => 'apple', 'b' => 'banana', 'c'

 => 'cranberry');
 reset($fruit);

while (list($key, $val) = each($fruit)) {
 echo "$key => $val\n";
}

 //a => apple b => banana c => cranberry

12

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Foreach()
 In PHP 5 items can be iterated over by

reference rather than simply by value
 foreach($array AS &$value) { … }

13

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

92

Sorting Arrays
 Sorting arrays comes up frequently, but can

be frequently be offloaded to an external
system (databases are a common system)
which may be able to do it faster

 The type of sorting that must be done
depends entirely on the data contained within
the array

14

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Array Sort
 Original Array:
Array
(
 [Paul] => Canada
 [Bob] => USA
 [Winston] => United Kingdom
 [David] => South Africa
)

15

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

93

Array Sort - sort()
 sort()
Array
(
 [0] => Canada
 [1] => South Africa
 [2] => USA
 [3] => United Kingdom
)

16

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Array Sort - ksort()
 Ksort()
Array
(
 [Bob] => USA
 [David] => South Africa
 [Paul] => Canada
 [Winston] => United Kingdom
)

17

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

94

Array Sort - asort()
 asort()
Array
(
 [Paul] => Canada
 [David] => South Africa
 [Bob] => USA
 [Winston] => United Kingdom
)

18

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Stacks & Queues

 Arrays can also be treated like a stack or a queue:
$fruit = array
("apple", "banana", "cantaloupe");
array_push($fruit, "dragonfruit");
//apple,banana, cantaloupe, dragonfruit

echo array_pop($fruit); //dragonfruit
//apple, banana, canteloupe

 Stack, implementing LIFO

19

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

95

Stacks and Queues
 Generally array_shift() will be combined with

array_push() for a Queue implementation
$fruit = array("banana", "cantaloupe");
array_unshift($fruit, "apple");
//apple, banana, cantaloupe

echo array_shift($fruit); //apple
//banana, cantaloupe

20

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Array Functions
 There’s a lot: http://ca.php.net/array/
 A few of note:

– array_walk()
– array_keys()
– array_values()
– array_change_key_case()

21

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

96

An array of conclusions
 Arrays are perfect for storing a set of related

data
 Remember precisely how to access various

elements, the syntax can be tricky
 There’s lots of functions, play around a bit
 Internal array pointers can be reset, but don’t

reset on their own

22

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Questions for further study
 Develop implementations of FIFO and LIFO

using built in array functions
 Experiment with various array sorting

methods, try mixing variable types (string,
integer, float)

 Implement a sorting mechanism using the
usort() function

 Research other array functions (array_keys,
array_values, _splice, _walk, etc)

23

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

97

Course Author: Paul Reinheimer

Zend Certification
Course

Files and Stream

Files
 Files provide a simple temporary to

permanent data store
 PHP5 presents two functions which make

handling files trivial, namely file_get_contents
() and file_put_contents()
– file_get_contents() was backported to PHP4

because it was so useful
 For large amounts of data, or in issues where

a race condition is possible a database would
be a better data store

2
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Files
 Many file functions still use the file pointer provided

by fopen()
$fp = fopen(__FILE__, 'r');
if ($fp === FALSE)
{
 echo "Failed to open file";
 exit;
}
//fread(), fgets(), fwrite(), fstat()
fclose($fp);

3
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

99

File Modes
 mode Description
 'r' Open for reading only; place the file pointer at the beginning of the file.
 'r+' Open for reading and writing; place the file pointer at the beginning of the

file.
 'w' Open for writing only; place the file pointer at the beginning of the file and

truncate the file to zero length. If the file does not exist, attempt to create it.
 'w+' Open for reading and writing; place the file pointer at the beginning of the

file and truncate the file to zero length. If the file does not exist, attempt to
create it.

 'a' Open for writing only; place the file pointer at the end of the file. If the file
does not exist, attempt to create it.

 'a+' Open for reading and writing; place the file pointer at the end of the file. If
the file does not exist, attempt to create it.

 'x' Create and open for writing only; place the file pointer at the beginning of
the file. If the file already exists, the fopen() call will fail by returning FALSE
and generating an error of level E_WARNING. If the file does not exist, attempt to
create it.

 'x+' Create and open for reading and writing; place the file pointer at the
beginning of the file. If the file already exists, the fopen() call will fail by
returning FALSE and generating an error of level E_WARNING.

4
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

File System Functions
 Copy
 Move/rename
 Unlink
 Stat
 Read
 Write
 Append

5
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

100

fstat
<?php

$fp = fopen(__FILE__, "r"); // open file
print_r(fstat($fp)); // get array of info about the file
/*
[dev] => 5633 // device
[ino] => 1059816 // inode
[mode] => 33188 // permissions
[nlink] => 1 // number of hard links
[uid] => 1000 // user id of owner
[gid] => 102 // group id of owner
[rdev] => -1 // device type
[size] => 106 // size of file
[atime] => 1092665414 // time of last access
[mtime] => 1092665412 // time of last modification
[ctime] => 1092665412 // time of last change
[blksize] => -1 // blocksize for filesystem I/O
[blocks] => -1 // number of blocks allocated
*/

?>
 Stat does it without the file being open6

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Streams
 Steams are the way that PHP handles working with

network resources
 Whenever you open up a file PHP creates a stream

in the background
 Each stream consists of several components:

– file wrapper
– one or two pipe-lines
– an optional context
– metadata about the stream

7
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

101

Stream Meta Data
 $fp = fopen("http://www.php.net/", "r");

print_r(stream_get_meta_data($fp));
Array(
 [wrapper_data] => Array(
 [0] => HTTP/1.1 200 OK
 [1] => Date: Thu, 12 Oct 2006 15:34:57 GMT
 [2] => Server: Apache/1.3.37 (Unix) PHP/5.2.0-dev
 [3] => X-Powered-By: PHP/5.2.0-dev
 [4] => Last-Modified: Thu, 12 Oct 2006 15:21:50 GMT
 [5] => Content-language: en
 [6] => Set-Cookie: COUNTRY=CAN%2C24.201.61.253; expires=Thu, 19-
Oct-2006 15:34:57 GMT; path=/; domain=.php.net
 [7] => Connection: close
 [8] => Content-Type: text/html;charset=utf-8)
 [wrapper_type] => http
 [stream_type] => tcp_socket
 [mode] => r+
 [unread_bytes] => 1088
 [seekable] =>
 [uri] => http://www.php.net/
 [timed_out] =>
 [blocked] => 1
 [eof] =>)

8
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Stream Context
<?php
$ctx = array('http' => array(
 'method' => 'HEAD', // make a HEAD request
 'header' => "Accept-language: de\r
 \n") // HTTP headers
);
$c = stream_context_create($ctx);
$fp = fopen('http://
www.php.net' , 'r', false, $c);?
?>

9
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

102

More about files
 Files can be locked to prevent race

conditions
flock($fp, LOCK_SH); //Place Shared lock
flock($fp, LOCK_EX); //
Place Exclusive (write) Lock
flock($fp, LOCK_UN); //Release lock

 Placing and removing locks can inhibit
performance as traffic increases, consider
using a different data store

10
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Convenience Functions
 The information obtained via these functions

is available in other ways (like using stat) but
these wrappers make it easy

 is_dir($path); //Returns if path is a directory
 is_executable($path); //Returns if path is an executable
 is_file($path);

– //Returns if path exists and is a regular file
 is_link($path);

– //Returns if path exists and is a symlink
 is_readable($path);

– //Returns if path exists and is readable
 is_writable($path);

– //Returns if path exists and is writable

11
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

103

Sockets
 Using stream context and a few other

techniques a lot can be done without
resorting to sockets, however for more
detailed control sockets can be used.

 Sockets allow read/write access to various
socket connections, while things like HTTP
may seem read only, at the protocol level
information is being sent to identify the
desired resource.

12
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Sockets
$fp = fsockopen
("example.preinheimer.com", 80, $errno, $errstr, 30)
;
if (!$fp) {
 echo "$errstr ($errno)
\n";
} else {
 $out = "GET / HTTP/1.1\r\n";
 $out .= "Host: example.preinheimer.com\r\n";
 $out .= "Connection: Close\r\n\r\n";
 fwrite($fp, $out);
 while (!feof($fp)) {
 echo fgets($fp, 128);
 }
 fclose($fp);
}

13
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

104

Sockets
HTTP/1.1 200 OK

Date: Wed, 14 Mar 2007 13:39:55 GMT

Server: Apache/2.2.3 (Debian) mod_ssl/2.2.3 OpenSSL/0.9.8c

Last-Modified: Mon, 28 Aug 2006 01:56:37 GMT

ETag: "5f0348-59-3c7e3f40"

Accept-Ranges: bytes

Content-Length: 89

Connection: close

Content-Type: text/html; charset=UTF-8

This domain exists for demonstrations, You should be
looking at one of

those, not this.

14
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Files of Conclusions
 Files are a great, easy to use datastore
 Locking is a pain in the neck, and may not

handle load well
 fopen() returns a resource, this resource is

used by many other file functions
 Modern applications should make use of the

file_(get|put)_contents() functions

15
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

105

Questions for further study
 Using streams, submit a search request to

google, print those results to the screen
 Retrieve the HTTP response headers from

that request
 Take a look at file locking
 Try doing a submission using POST rather

than get
 Store the results locally using

file_put_contents()

16
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

106

Course Author: Paul Reinheimer

Zend Certification
Course

Security

Course Progress

 The twelve major topics of the exam:
– PHP Basics
– Functions
– Strings
– Arrays
– Files and Streams
– Security
– Databases
– Design and Theory
– Object Oriented Programming
– PHP 4 vs PHP 5
– Web Features
– XML

2
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Security Concepts
 Defense in Depth
 Principle of Least Privilege
 Terms: Validation vs Escaping

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

108

Defense in Depth
 When you plan with defense in depth, you plan for

failure. Rather than internal functions assuming the
data they receive is already validated or escaped,
they will check and confirm.

 Applications that demonstrate defense in depth are
not only more resistant to attack when they are
developed, they also remain more resistant over time
as new attacks are developed, and as more code is
added to them

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Principle of Least Privilege
 Your PHP applications by default has a lot of

power, they execute as the web user (often
apache or www-data) with all the rights and
privileges thereof

 If an attacker gains control of PHP through
an application vulnerability this can be used
and abused

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

109

Validation vs Escaping
 These terms are often confused, or used

interchangeably
 Validation or Filtering is the process by which

you subject data to a series of rules, either it
passes (validates) or does not

 Escaping is the process by which you
prepare data for a specific resource by
“escaping” certain portions of the data to
avoid confusion of instruction and data

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Validate Input
 Whenever you receive data one of three

things can be said about it:
– It is valid, the user entered the data you want, in

the format you desire
– It is invalid because the user either did not comply

or did not understand the rules on the data you
requested (eg. Poorly formatted phone number)

– It is invalid because the user is attempting to
compromise your system

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

110

Validate Input
 Data from the end user can not be trusted, it

must be validated before it can be used
– How does user data get into your PHP

application?
 Validate data first don’t save it for last
 Fail early, tell the user what went wrong

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Whitelist vs Blacklist
 There are two major approaches to data validation,

the whitelist and blacklist approach
 Under the whitelist approach you select a series of

valid characteristics (frequently characters) only data
that follows these rules is accepted as valid

 Under the blacklist approach you select a series of
invalid characteristics, any data that contains these
characteristics is considered invalid

 Which do you prefer?

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

111

Functions to examine
 ctype_alnum -- Check for alphanumeric character(s)
 ctype_alpha -- Check for alphabetic character(s)
 ctype_cntrl -- Check for control character(s)
 ctype_digit -- Check for numeric character(s)
 ctype_graph -- Check for any printable character(s) except space
 ctype_lower -- Check for lowercase character(s)
 ctype_print -- Check for printable character(s)
 ctype_punct -- Check for any printable character which is not whitespace or an

alphanumeric character
 ctype_space -- Check for whitespace character(s)
 ctype_upper -- Check for uppercase character(s)
 ctype_xdigit -- Check for character(s) representing a hexadecimal digit
 preg_match – Apply regular expression rules to data
 is_array – Check to see if variable is an array

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Register Globals
 With register globals enabled PHP

automatically creates global variables for all
variables received

 Register globals was great, when you were
learning, and no one else saw your
applications

 Register globals on it’s own is not a security
risk, register globals combined with sloppy
coding is the problem

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

112

Register Globals
 To write secure code that remains secure in

an environment with register globals enabled
you must pre-initilize all your variables

 Code with E_STRICT enabled, it will warn
you of variables that are used before
initialization

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Magic Quotes
 Magic Quotes automatically escapes quote

characters, backslash and null to make it
safer to send data to databases

 This isn’t really a good thing, data goes
places other than databases, database
accept meta characters other than the ones
magic quotes deals with

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

113

Magic Quotes
 Gone completely in PHP6
 Disabled by default in PHP5
 A pain in the neck, you end up with code like

this:
 if (get_magic_quotes_gpc())

{
 $string = stripslashes($string);
}

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Escaping Output
 When you send data to a resource

(database, web browser, etc.) that resource
likely interprets certain characters as having
a specific meaning, by escaping the output
you tell the resource to ignore the meaning
for that character

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

114

Escaping Output – Web Page
 strip_tags() – Remove anything that looks

like an HTML tag from a string
 htmlentities() – Convert any character that

has a specific HTML entity into it
 Htmlspecialchars() – Convert &, “, ‘, <, > into

their entities

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Escaping Output - SQL
 You have two choices, escape your data or

use prepared statements
– To escape your data use a database specific

function, the newest one available
– mysql_real_escape_string()

 Prepared statements are preferred as they
offer perfect separation
– http://usphp.com/manual/en/function.mysqli-

prepare.php

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

115

XSS
 Under a cross site scripting attack an

attacker injects code into your page (forum
post, shout box, etc) that contains code that
re-writes the page to do something nefarious

 This can be prevented through proper
escaping and data validation techniques

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

CSRF
 Under a cross site request forgery attack a

site exploits another sites persistent user
trust relationship to make something happen

 <img src=http://www.amazon.com/buy/my/book
height=“1” width=“1”>

 iFrames are another common tool leveraged
in this technique

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

116

Sessions
 Sessions provide safer state, it may not

nesesarily be safe
 Basically, sessions combine cookies

containing a session ID with a local(ish) data
store corresponding to that session id

 If the session id is compromised, or the data
store is not secure (/tmp on a shared
machine) sessions are still vulnerable to
attack

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Session Fixation
 This attack has two sides, either an attacker

tricks another user into clicking on a link
providing a session id, or an innocent user
pastes a link containing their session id to
someone they shouldn’t have

 To defend against this type of attack don’t
allow session IDs to come in over GET, and
regenerate session ids when a user
authenticates themself

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

117

Session Hijacking
 Session IDs are very random
 Predicting them is hard, it’s much easier to:

– Check out /tmp on a shared server, see what
people have

– Intercept communications
– Implement session fixation

 To defend, implement some browser
fingerprinting

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Additional Topics
 Filesystem Security
 Dynamic Includes
 Code Injections

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

118

Other Security Settings
 open_basedir – Restricts PHP’s file acces to

one or more specified directores
– Relatively quick and easy

 safe_mode – limits file access based on uid/
gid of running script and file to be accessed
– Slower, doesn’t work well with uploaded files

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

119

Course Author: Paul Reinheimer

Zend Certification
Course

Databases

SQL

 You will not be tested on database specific code
– *In Theory* In reality many cross database experts

have stated a belief that the exam has a MySQL base
 A basic understanding of SQL and it’s concepts is

required

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Some Key Terminology

 DataBase Management System (DBMS)
 Database
 Table
 Column or Field
 Record or Column
 Query
 Primary Key

3

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

121

Data Types

 While PHP is loosely types, databases are not.
Detailed information about the data being stored
is required for efficient storage and retrieval,
common data-types include:
– int - Signed integer number, 32bits
– char - Fixed length character string
– varchar - Variable length character string
– float - Signed floating point number, 64bits

4

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Relationships

 Most modern database systems fall into the
relational category, the basis of which is the
relationship between various tables

 Relationships link records based on some
common data, relationships can be one to one,
one to many, many to many

 Database systems can be configured to enforce
those relationships to maintain referential integrity

5

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

122

Indices

 Databases are smart and fast, but the database
designer has foreknowledge of how the database
will be used

 With this knowledge the designer can create an
“index” on appropriate columns

 This index instructs the DBMS to store additional
information about the data in that column, to
make locating data within it as fast as possible

6

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

SQL CREATE

 CREATE TABLE users(
 username varchar(32),
 password varchar(32),
 first_name varchar(50),
 last_name varchar(50),
 PRIMARY KEY(username));

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

123

INSERT

 INSERT
 INTO users
 VALUES (‘paul', md5(‘horriblePassword'),
 ‘Paul', ‘Reinheimer');

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

SELECT

 SELECT * FROM users;
 SELECT first_name, last_name FROM users;
 SELECT * FROM users WHERE first_name =

‘paul’

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

124

JOINS

 SELECT u.username, p.title, p.message FROM
users AS u JOIN posts AS p ON u.username =
p.username

 Outer Joins
– Right
– Left

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Analyzing Queries

 EXPLAIN EVERYTHING!
 EXPLAIN SELECT * FROM

07_amazon_monitor_rank_results WHERE asin
= '0672324547';

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

125

Explain Example
mysql> EXPLAIN SELECT * FROM 07 WHERE asin = '0672324547';

+----+-------------+--------------------------------+------+---------------+------

|id| select_type|table| type | possible_keys | key | key_len | ref | rows | Extra

+----+-------------+--------------------------------+------+---------------+------

| 1| SIMPLE | 07 | ALL | NULL | NULL | NULL | NULL | 552 | Using where

+----+-------------+--------------------------------+------+---------------+------

1 row in set (0.02 sec)

mysql> EXPLAIN SELECT * FROM 07 WHERE asin = '0672324547';

+----+-------------+--------------------------------+------+---------------+------

|id| select_type | table | type | possible_keys | key | key_len | ref rows| Extra

|1| SIMPLE | 07 | ref | asin | asin | 12 | const | 69 | Using where

+----+-------------+--------------------------------+------+---------------+------

1 row in set (0.00 sec)

12

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Prepared Statements

 Prepared statements (They’re in MySQLi I
promise) allow you to increase speed of repeated
queries, and isolate data from command

 First you Prepare the statement, then you bind
parameters to it, then you execute it

 http://ca.php.net/manual/en/function.mysqli-
prepare.php

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

126

Prepared Statement Example

$link = mysqli_connect("localhost", "u", "p", "ex");
$city = "Montreal";
$stmt = mysqli_stmt_init($link);
if ($stmt = mysqli_stmt_prepare
($stmt, "SELECT Province FROM City WHERE Name=?"))
{
 mysqli_stmt_bind_param($stmt, "s", $city);
 mysqli_stmt_execute($stmt);
 mysqli_stmt_bind_result($stmt, $province);
 mysqli_stmt_fetch($stmt);
 printf("%s is in district %s\n", $city, $province);
 mysqli_stmt_close($stmt);
}

mysqli_close($link);

14

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Transactions

 Transactions allow you to merge multiple queries
into one atomic operation, either they ALL
execute successfully, or none do

 BEGIN TRANSACTION #name;
 … queries here
 COMMIT;

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

127

PDO

 PDO stands for PHP Data Objects, and it
presents a consistent object oriented method to
interact with various databases

 PDO on its own is not able to access any
databases, a database specific PDO driver must
also be installed

 In some situations PDO actually allows for
greater performance than the native database
driver (eg. MySql with prepared statements)

16

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Connecting with PDO

 Regardless of which database you are
connecting to, you create a new instance of the
same object. The connection type is defined in
the first parameter

define(USERNAME, "preinheimer");
define(PASSWORD, "sillyPassword");
$pdoConnection = new PDO
 ('mysql:host=localhost;dbname=example',
 USERNAME, PASSWORD);

17

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

128

Executing a Query

 To execute a query, access the query method of
the created PDO object. It can be iterated over to
access the various rows in the result.

foreach ($pdoConnection->
 query("SELECT * FROM users") AS $user)
{
 echo "User number {$user['id']}
 has a username of {$user['userName']}\n";
}

18

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Prepared Statements

$query = "SELECT * FROM posts WHERE topicID =
 :tid AND poster = :userid";
$statement = $pdoConnection->prepare($query,
 array(PDO::ATTR_CURSOR,
 PDO::CURSOR_FWDONLY));

$statement->execute(array(':tid' => 100,
 ':userid' => 12));
$userAPosts = $statement->fetchAll();

$statement->execute(array(':tid' => 100,
 ':userid' => 13));
$userBPosts = $statement->fetchAll();

19

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

129

Closing the connection

 To close a PDO connection, simply set the
variable containing the PDO object to null

$pdoConnection = null;

20

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Database Conclusions

 Databases are likely the fastest datastore you
can access

 SQL is a standardized language, most DBMS
providers tweak or extend it in some way

 The power lies in the SQL syntax which can be
used to locate, update or remove data with an
almost terrifying level of complexity

 Indices are a great idea, use EXPLAIN or
equivalent syntax to confirm their use

21

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

130

Database Homework

 Using your favourite DBMS:
– Create a new table to store the following information:

first & last name, phone number, username, password,
email address

– Populate the table manually with at least four records
– Add an index
– Select data from the table based on various selection

criteria
– Update the table based on the same

22

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

131

Course Author: Paul Reinheimer

Zend Certification
Course

Object Oriented Programming

Course Progress

 The twelve major topics of the exam:
– PHP Basics
– Functions
– Strings
– Arrays
– Files and Streams
– Security
– Databases
– Design and Theory
– Object Oriented Programming
– PHP 4 vs PHP 5
– Web Features
– XML2

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Object Oriented Programming
 Prior to PHP5 OOP was a hack on top of the

array implementation
 PHP5 Changed everything, in a great way

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

133

Simple OO Example
 class person

{
 public $age;
 public $name;
 function __construct($name, $age)
 {
 $this->name = $name;
 $this->age = $age;
 }

 function birthday()
 {
 echo "Happy Birthday " . $this->name . "!
";
 $this->age++;
 }

}

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Simple OO Example
 $myChild = new person("Cayce", 1);

$myFather = new person("Mike", 50);
echo $myChild->name . " is " . $myChild->age . " years old
";
echo $myFather->name . " is " . $myFather->age . " years old
";
$myChild->birthday();
$myFather->birthday();

echo $myChild->name . " is " . $myChild->age . " years old
";
//

Cayce is 1 years old
Mike is 50 years old
Happy Birthday Cayce!
Happy Birthday Mike!
Cayce is 2 years old

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

134

PPP & F?
 Public – Method or property can be accessed

externally
 Private – Method or property is private to that

class and can not be accessed externally
 Protected – Method or property is private and

can also be accessed by extending classes
 Final – Method can not be overridden by

extending classes

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Extending
 class friend extends person

{
 private $relationship;
 const MYNAME = "paul";

 function __construct($name, $age, $relationship)
 {
 parent::__construct($name, $age);
 $this->relationship = $relationship;
 }

 function showStatus()
 {
 echo "{$this->name} is my {$this->relationship}";
 }

 function fight()
 {
 $this->relationship = "enemy";
 }

 static function phoneCall()
 {
 echo friend::MYNAME . " the phone is for you";
 }
}

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

135

Extending
 $laura = new friend("Laura", "20", “friend");

$laura->birthday();
$laura->showStatus();
$laura->fight();
$laura->showStatus();
echo friend::MYNAME;
friend::phoneCall();

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Autoloading
 function __autoload($class_name)

{
 require_once "/www/phpClasses/
 {$class_name}.inc.php";
}
$a = new friend;

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

136

Typehinting
 ageFast($laura);

function ageFast(person $aboutToGetOld)
{
 for ($i = 0; $i< 10; $i++)
 {
 $aboutToGetOld->birthday();
 }
}

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Special Functions
 __construct()
 __destruct()
 __toString()
 __sleep()
 __wakeup()
 __call()
 __get()
 __set()

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

137

Exceptions
 Unified method of error handling
 Makes proper error handling possible
 Can be accomplished with try catch blocks or

by setting a unified error handler once
 Try catch blocks take precedence if the error

raising code is within them

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Exceptions
 try {

 $fp = fopen("c:/blah.txt", "w");
 if (!$fp)
 throw new Exception("Unable to open file.");
 if (fwrite($fp, "test") != 3)
 throw new Exception("Cannot write data.");
 if (!fclose($fp))
 throw new Exception("Cannot close file.");
} catch (Exception $e)
{
 printf("Error on %s:%d %s\n",
 $e->getFile(), $e->getLine(), $e->getMessage());
 exit;
}

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

138

Exceptions
 <?php

function exception_handler($exception) {
 echo "Uncaught exception: " ,
 $exception->getMessage(), "\n";
}

set_exception_handler('exception_handler');

throw new Exception('Uncaught Exception');
echo "Not Executed\n";
?>

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Reflection API
 The reflection API provides a manner to

obtain detailed information about code
 Documentation: http://ca3.php.net/reflection

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

139

OOP Conclusions
 Slower than procedural code, but allows

complex tasks to be understood more readily
 Data and related methods are grouped into

one cohesive structure
 Multiple instances of the same object can be

created
 Objects are now dealt with by reference

rather than by value, objects must be
explicitly cloned to be copied

16
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

OOP Homework
 Develop a small OOP class, including a

constructor, destructor, sleep, and wakeup
 Extend it
 Instantiate at least two copies of the class,

use them independently, compare them to
each other

 Pass an object to another function, use type
hinting

 Try the instanceOf operator out

17
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

140

Course Author: Paul Reinheimer

Zend Certification
Course

Design and Theory

Course Progress

 The twelve major topics of the exam:
– PHP Basics
– Functions
– Strings
– Arrays
– Files and Streams
– Security
– Databases
– Design and Theory
– Object Oriented Programming
– PHP 4 vs PHP 5
– Web Features
– XML2

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

SPL
 Standard PHP Library
 Extension available and compiled by default

in PHP 5
 Improved in PHP 5.1
 http://www.php.net/~helly/php/ext/spl/

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

142

Code Reuse
 We solve the same problems every day
 We solve the same problems as our neighbor

every day
 We solve the same problems on every

project
 Code Reuse allows us to cut development

time while increasing code quality

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

OOP Theory
 Design Patterns - Some time ago people

realized that we were solving the same
problems again and again, they then decided
to sit down and come up with really good
solutions to those problems, they’re called
design patterns

 The advantages of design patterns are two
fold: first they present a well defined solution
to common problems, second they provide a
common language for developers

Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

143

Factory Pattern
 The factory pattern is used to provide a

common interface to a series of classes with
identical functionality but different internals
(think data storage, varying shipping
systems, payment processing)

 The “factory” provides an instance of the
appropriate class

6
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Factory Pattern
 Code Example:

class shippment
{ public static function getShippmentClass($method) {
 switch ($method) {
 case "Fedex":
 return new shipFedEx();
 break;
 case "USPS":
 return new shipUSPS();
 break;
 case "UPS":
 return new shipUPS();
 break;
 default:
 throw new Exception("Unknown shipment method requested");
 }
 }
}
$shippingInterface = shippment::getShippmentClass("Fedex");

7
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

144

Singleton Pattern
 The singleton pattern is used to ensure that

you only have one instance of a given class
at a time

 This is useful in a myriad of circumstances,
resource connections (database, file,
external) most notably

8
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Singleton Pattern
 Code Example:

class singleton
{
 private static $instance = null;
 protected function __construct()
 { /* ... */ }

 public function getInstance()
 {
 if (self::$instance === null)
 {
 $class = __CLASS__;
 self::$instance = new $class;
 }
 return self::$instance;
 }
}
$connection = new singleton(); //Error
$connection = singleton::getInstance();

9
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

145

Registry Pattern
 An extension of the Singleton Pattern, that

allows for differing functionality based on
some input data

 Imagine using the Singleton pattern on a
database, but occasionally requiring a
connection to an alternate database, Registry
provides this

10
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

ActiveRecord Pattern
 Encapsulates a data source, allowing

external code to concentrate on using the
data while the active record pattern provides
a consistent interface, hiding the work that
goes into iterating over records, making
changes etc.

 Most commonly implemented with databases
– One of the things people love about Ruby

11
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

146

MVC Pattern
 Model-View-Controller
 Complex pattern, the user initiates an action

via the controller, which interfaces with the
model, finally the view is called which takes
care of dealing with the user interface

 This clear distinction between various layers
allows for modularity in code, entire levels of
code can be swapped in and out

12
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

Design and Theory Conclusion
 SPL contains a number of very useful code

sets, take a look, they’re really useful
 Design patterns present common solutions to

common problems, they also provide
programmers with a common language when
describing solutions

13
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

147

Design and Theory Homework
 Develop applications using at least two of the

SPL libraries
 Implement the Singleton pattern on some

database code you’re already using
 Implement the factory pattern using some

basic example code
 Read up on other design patterns

14
Copyright c©2006 Marco Tabini & Associates, Inc. All Rights Reserved

Notes

148

	1-PHPBasics-Print
	10-PHP4vs5-Print
	11-XMLandWebServices-Print
	12-WebFeatures-Print
	13-Supplementary-Print
	2-Functions-Print
	3-Strings-Print
	4-Arrays-Print
	5-Files-Print
	6-Security-Print
	7-Databases-Print
	8-OOP-Print
	9-DesignAndTheory-Print

